Stem extension and mechanical stability of Xanthium canadense grown in an open or in a dense stand.

نویسندگان

  • Ryoji Watari
  • Hisae Nagashima
  • Tadaki Hirose
چکیده

BACKGROUND AND AIMS Plants in open, uncrowded habitats typically have relatively short stems with many branches, whereas plants in crowded habitats grow taller and more slender at the expense of mechanical stability. There seems to be a trade-off between height growth and mechanical stability, and this study addresses how stand density influences stem extension and consequently plant safety margins against mechanical failure. METHODS Xanthium canadense plants were grown either solitarily (S-plants) or in a dense stand (D-plants) until flowering. Internode dimensions and mechanical properties were measured at the metamer level, and the critical buckling height beyond which the plant elastically buckles under its own weight and the maximum lateral wind force the plant can withstand were calculated. KEY RESULTS Internodes were longer in D- than S-plants, but basal diameter did not differ significantly. Relative growth rates of internode length and diameter were negatively correlated to the volumetric solid fraction of the internode. Internode dry mass density was higher in S- than D-plants. Young's modulus of elasticity and the breaking stress were higher in lower metamers, and in D- than in S-plants. Within a stand, however, both moduli were positively related to dry mass density. The buckling safety factor, a ratio of critical buckling height to actual height, was higher in S- than in D-plants. D-plants were found to be approaching the limiting value 1. Lateral wind force resistance was higher in S- than in D-plants, and increased with growth in S-plants. CONCLUSIONS Critical buckling height increased with height growth due mainly to an increase in stem stiffness and diameter and a reduction in crown/stem mass ratio. Lateral wind force resistance was enhanced due to increased tissue strength and diameter. The increase in tissue stiffness and strength with height growth plays a crucial role in maintaining a safety margin against mechanical failure in herbaceous species that lack the capacity for secondary growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of mechanical stress and plant density on mechanical characteristics, growth, and lifetime reproduction of tobacco plants.

Plastic increases in stem elongation in dense vegetation are generally believed to be induced by canopy shading, but because plants protect each other from wind, shielding (reduced mechanical stress) could also play a role. To address this issue, tobacco Nicotiana tabacum plants were subjected to two levels of mechanical stress, 0 (control) or 40 (flexed) daily flexures, and grown solitarily, i...

متن کامل

Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

BACKGROUND AND AIMS Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite ...

متن کامل

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

Tissue Engineering: A Biological Solution for Tissue Damage, Loss or End Stage Organ Failure

In recent years the science of tissue engineering has emerged as a powerful tool for the development of a novel set of tissue replacement parts and technologies. Recent advances in the fields of biomaterials, stem cell technologies, growth factor field and biomimetics have created a unique set of opportunities for investigators to fabricate lab-grown tissues from combination of extracellular ma...

متن کامل

Bone Tissue Engineering: a Mini-Review

Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 114 1  شماره 

صفحات  -

تاریخ انتشار 2014